

ADVANCED GCE

Further Pure Mathematics 3

Candidates answer on the answer booklet.

OCR supplied materials:

- 8 page answer booklet
- (sent with general stationery)
- List of Formulae (MF1)

Other materials required:

• Scientific or graphical calculator

Monday 13 June 2011 Morning

4727

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet. Please write clearly and in capital letters.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a scientific or graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- This document consists of 4 pages. Any blank pages are indicated.

- 1 A line *l* has equation $\frac{x-1}{5} = \frac{y-6}{6} = \frac{z+3}{-7}$ and a plane *p* has equation x + 2y z = 40.
 - (i) Find the acute angle between *l* and *p*.
 - (ii) Find the perpendicular distance from the point (1, 6, -3) to p. [2]
- 2 It is given that $z = e^{i\theta}$, where $0 < \theta < 2\pi$, and $w = \frac{1+z}{1-z}$.
 - (i) Prove that $w = i \cot \frac{1}{2}\theta$.
 - (ii) Sketch separate Argand diagrams to show the locus of z and the locus of w. You should show the direction in which each locus is described when θ increases in the interval $0 < \theta < 2\pi$. [3]
- **3** The variables *x* and *y* satisfy the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + 4y = 5\cos 3x.$$

- (i) Find the complementary function.
- (ii) Hence, or otherwise, find the general solution.
- (iii) Find the approximate range of values of y when x is large and positive. [2]
- 4 A group G, of order 8, is generated by the elements a, b, c. G has the properties

$$a^2 = b^2 = c^2 = e$$
, $ab = ba$, $bc = cb$, $ca = ac$,

where *e* is the identity.

(i) Using these properties and basic group properties as necessary, prove that abc = cba. [2]

The operation table for G is shown below.

	е	a	b	С	bc	са	ab	abc
е	е	а	b	С	bc	са	ab	abc
а	а	е	ab	ca	abc	с	b	bc
b	b	ab	е	bc	С	abc	a	са
С	С	са	bc	e	b	a	abc	ab
bc	bc	abc	С	b	е	ab	са	а
са	са	С	abc	a	ab	е	bc	b
ab	ab	b	a	abc	са	bc	e	С
abc	abc	bc	ca	ab	а	b	С	е

- (ii) List all the subgroups of order 2.
- (iii) List five subgroups of order 4.
- (iv) Determine whether all the subgroups of G which are of order 4 are isomorphic. [2]

[2]

[3]

[4]

[3]

[2]

[7]

5 The substitution $y = u^k$, where k is an integer, is to be used to solve the differential equation

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + 3y = x^2 y^2 \tag{A}$$

by changing it into an equation (B) in the variables u and x.

(i) Show that equation (B) may be written in the form

$$\frac{du}{dx} + \frac{3}{kx}u = \frac{1}{k}xu^{k+1}.$$
 [4]

- (ii) Write down the value of k for which the integrating factor method may be used to solve equation (B). [1]
- (iii) Using this value of k, solve equation (B) and hence find the general solution of equation (A), giving your answer in the form y = f(x). [4]
- 6 (a) The set of polynomials $\{ax + b\}$, where $a, b \in \mathbb{R}$, is denoted by *P*. Assuming that the associativity property holds, prove that *P*, under addition, is a group. [4]
 - (b) The set of polynomials $\{ax + b\}$, where $a, b \in \{0, 1, 2\}$, is denoted by Q. It is given that Q, under addition modulo 3, is a group, denoted by (Q, +(mod3)).
 - (i) State the order of the group. [1]
 - (ii) Write down the inverse of the element 2x + 1. [1]
 - (iii) q(x) = ax + b is any element of Q other than the identity. Find the order of q(x) and hence determine whether (Q, +(mod3)) is a cyclic group. [4]
- 7 (In this question, the notation $\triangle ABC$ denotes the area of the triangle ABC.)

The points P, Q and R have position vectors $p\mathbf{i}$, $q\mathbf{j}$ and $r\mathbf{k}$ respectively, relative to the origin O, where p, q and r are positive. The points O, P, Q and R are joined to form a tetrahedron.

- (i) Draw a sketch of the tetrahedron and write down the values of $\triangle OPQ$, $\triangle OQR$ and $\triangle ORP$. [3]
- (ii) Use the definition of the vector product to show that $\frac{1}{2} |\overrightarrow{RP} \times \overrightarrow{RQ}| = \Delta PQR.$ [1]
- (iii) Show that $(\Delta OPQ)^2 + (\Delta OQR)^2 + (\Delta ORP)^2 = (\Delta PQR)^2$. [6]
- 8 (i) Use de Moivre's theorem to express $\cos 4\theta$ as a polynomial in $\cos \theta$. [4]
 - (ii) Hence prove that $\cos 4\theta \cos 2\theta \equiv 16 \cos^6 \theta 24 \cos^4 \theta + 10 \cos^2 \theta 1.$ [1]
 - (iii) Use part (ii) to show that the only roots of the equation $\cos 4\theta \cos 2\theta = 1$ are $\theta = n\pi$, where *n* is an integer. [3]
 - (iv) Show that $\cos 4\theta \cos 2\theta = -1$ only when $\cos \theta = 0$. [3]

1 (i)	$\theta = \sin^{-1} \frac{ [5, 6, -7] \cdot [1, 2, -1] }{\sqrt{5^2 + 6^2 + (-7)^2} \sqrt{1^2 + 2^2 + (-1)^2}}$	M1* M1 (*dep) A1	For using scalar product of line and plane vectors For both moduli seen For correct scalar product
	$\theta = \sin^{-1} \frac{100}{\sqrt{110}} = 69.1^{\circ} (69.099^{\circ}, 1.206)$	A1 4	For correct angle
	$\phi = \sin^{-1} \frac{ [5, 6, -7] \times [1, 2, -1] }{\sqrt{5^2 + 6^2 + (-7)^2} \sqrt{1^2 + 2^2 + (-1)^2}}$	SR M1* M1 (*dep)	For vector product of line and plane vectors AND finding modulus of result For moduli of line and plane vectors seen
	$\phi = \sin^{-1} \frac{\sqrt{84}}{\sqrt{110}\sqrt{6}} = 20.9^{\circ} \implies \theta = 69.1^{\circ}$	A1 A1	For correct modulus $\sqrt{84}$ For correct angle
(ii)	METHOD 1		
	$d = \frac{\left 1 + 12 + 3 - 40\right }{\sqrt{1^2 + 2^2 + (-1)^2}} = \frac{24}{\sqrt{6}} = 4\sqrt{6} \approx 9.80$	M1 A1 2	For use of correct formula For correct distance
	METHOD 2		
	$(1+\lambda)+2(6+2\lambda)-(-3-\lambda)=40$	M1	For substituting parametric form into plane
	$\Rightarrow \lambda = 4 \Rightarrow d = 4\sqrt{6}$	A1	For correct distance
	<i>OR</i> distance from $(1, 6, -3)$ to $(5, 14, -7)$		
	$=\sqrt{4^2+8^2+(-4)^2}=\sqrt{96}$		
	METHOD 3		
	Plane through $(1, 6, -3)$ parallel to p is	M1	For finding parallel plane through $(1, 6, -3)$
	$x + 2y - z = 16 \implies d = \frac{40 - 16}{\sqrt{6}} = \frac{24}{\sqrt{6}}$	A1	For correct distance
	METHOD 4		
	e.g. $(0, 0, -40)$ on p	M1	For using any point on <i>p</i> to find vector
	\Rightarrow vector to $(1, 6, -3) = \pm (1, 6, 37)$		and scalar product seen e.g. $[1, 6, 37] \cdot [1, 2, -1]$
	$d = \frac{ [1, 6, 37] \cdot [1, 2, -1] }{\sqrt{6}} = \frac{24}{\sqrt{6}}$	A1	For correct distance
	METHOD 5		
	<i>l</i> meets <i>p</i> where $(1+5t) + 2(6+6t) - (-3-7t) = 40$		For finding <i>t</i> where <i>l</i> meets <i>p</i>
	$\Rightarrow t = 1 \Rightarrow d = [5, 6, -7] \sin \theta$	M1	and linking <i>d</i> with triangle
	$\Rightarrow d = \sqrt{110} \frac{24}{\sqrt{110}\sqrt{6}} = \frac{24}{\sqrt{6}}$	A1	For correct distance
		6	
2 (i)	METHOD 1	M1	$E_{i} = \frac{\pm \frac{1}{2} i\theta}{1 + \frac{1}{2} i\theta}$
	$1 + e^{i\theta} e^{-\frac{1}{2}i\theta} + e^{\frac{1}{2}i\theta}$	111	<i>ETTHER</i> FOI changing LFIS terms to e ⁻²
	EITHER $\frac{1}{1-e^{i\theta}} = \frac{1}{e^{-\frac{1}{2}i\theta} - e^{\frac{1}{2}i\theta}}$		<i>OR in reverse</i> For using $\cot \frac{1}{2}\theta = \frac{\cos \frac{1}{2}\theta}{\sin \frac{1}{2}\theta}$
	$=\frac{2\cos\frac{1}{2}\theta}{-2i\sin\frac{1}{2}\theta}=i\cot\frac{1}{2}\theta$	M1	For either of $\frac{\cos 1}{\sin 2}\theta = \frac{e^{\frac{1}{2}i\theta} \pm e^{-\frac{1}{2}i\theta}}{(2)(i)}$ soi
	OR in reverse with similar working	AI 3	For fully correct proof to AG SR If factors of 2 or i are not clearly seen, award M1 M1 A0

2 (i) –	METHOD 2		
	EITHER $\frac{1+e^{i\theta}}{1-e^{i\theta}} \times \frac{1-e^{-i\theta}}{1-e^{-i\theta}} = \frac{e^{i\theta}-e^{-i\theta}}{2-\left(e^{i\theta}+e^{-i\theta}\right)}$	M1	For multiplying top and bottom by complex conjugate in exp or trig form
	$OR \ \frac{1 + \cos\theta + i\sin\theta}{1 - \cos\theta - i\sin\theta} \times \frac{1 - \cos\theta + i\sin\theta}{1 - \cos\theta + i\sin\theta}$		
	$=\frac{2i\sin\theta}{2-2\cos\theta}=\frac{2i\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta}{2\sin^{2}\theta}=i\cot\frac{1}{2}\theta$	M1	For using both double angle formulae correctly
-	METHOD 2	AI	For fully correct proof to AG
	$\frac{1+\cos\theta+i\sin\theta}{1-\cos\theta-i\sin\theta} = \frac{2\cos^2\frac{1}{2}\theta+2i\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta}{2\sin^2\frac{1}{2}\theta-2i\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta}$	M1	For using both double angle formulae correctly
	$=\frac{2\cos\frac{1}{2}\theta\left(\cos\frac{1}{2}\theta+i\sin\frac{1}{2}\theta\right)}{2\sin\frac{1}{2}\theta\left(\sin\frac{1}{2}\theta-i\cos\frac{1}{2}\theta\right)}$	M1	For appropriate factorisation
	$= \operatorname{i} \cot \frac{1}{2} \theta \frac{\left(\sin \frac{1}{2} \theta - \operatorname{i} \cos \frac{1}{2} \theta\right)}{\left(\sin \frac{1}{2} \theta - \operatorname{i} \cos \frac{1}{2} \theta\right)} = \operatorname{i} \cot \frac{1}{2} \theta$	A1	For fully correct proof to AG
-	METHOD 4		
	$\frac{1+\cos\theta+i\sin\theta}{1-\cos\theta-i\sin\theta} = \frac{1+\frac{1-t^2}{1+t^2}+i\frac{2t}{1+t^2}}{1-\frac{1-t^2}{2}-i\frac{2t}{2}}$	M1	For substituting both <i>t</i> formulae correctly
_	$= \frac{2+2it}{2t^2-2it} = \frac{1}{t}\frac{1+it}{t-i} = \frac{i}{t}\frac{t-i}{t-i} = i\cot\frac{1}{2}\theta$	M1 A1	For appropriate factorisation For fully correct proof to AG
	METHOD 5		
	$\frac{1+e^{i\theta}}{1-e^{i\theta}} \times \frac{1+e^{i\theta}}{1+e^{i\theta}} = \frac{1+2e^{i\theta}+e^{2i\theta}}{1-e^{2i\theta}}$		For multiplying top and bottom by $1 + e^{i\theta}$
	$-\frac{2+e^{i\theta}+e^{-i\theta}}{2}$	M1	and attempting to divide by $e^{i\theta}$
	$e^{-i\theta} - e^{i\theta}$		<i>OR</i> multiplying top and bottom by $1 + e^{-i\theta}$
	$=\frac{2(1+\cos\theta)}{-2\mathrm{i}\sin\theta}=\frac{2\mathrm{cos}^2\frac{1}{2}\theta}{-2\mathrm{i}\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta}=\frac{\cos\frac{1}{2}\theta}{-\mathrm{i}\sin\frac{1}{2}\theta}$	M1	For using both double angle formulae correctly
	$=i\cot\frac{1}{2}\theta$	A1 3	For fully correct proof to AG
(ii)	im z im w ψ re	M1 A1 B1 3	For a circle centre O For indication of radius = 1 and anticlockwise arrow shown For locus of w shown as imaginary axis described downwards
		6	

3	(i)	METHOD 1 $m+4 (= 0) \Rightarrow CF (y=)Ae^{-4x}$	M1 A1 2	For correct auxiliary equation (soi) For correct CF
		METHOD 2		
		Separating variables on $\frac{dy}{dx} + 4y = 0$		
		$\Rightarrow \ln y = -4x$	M1	For integration to this stage
		\Rightarrow CF (y =)Ae ^{-4x}	A1	For correct CF
	(ii)	$PI (y =) p \cos 3x + q \sin 3x$	B1	For stating PI of correct form
		$y' = -3p\sin 3x + 3q\cos 3x$	M1	For substituting y and y' into DE
		$\Rightarrow (-3p+4q)\sin 3x + (4p+3q)\cos 3x = 5\cos 3x$	A1	For correct equation
		$\Rightarrow \begin{array}{c} -3p + 4q = 0 \\ 4p + 3q = 5 \end{array} \Rightarrow p = \frac{4}{5}, \ q = \frac{3}{5}$	M1 A1 A1	For equating coeffs and solving For correct value of p , and of q
		GS $(y =) Ae^{-4x} + \frac{4}{5}\cos 3x + \frac{3}{5}\sin 3x$	B1√ 7	For GS f.t. from their CF+PI with 1 arbitrary constant
		SR Integrating factor method may be use	ed, followe Marks f	d by 2-stage integration by parts or C+iS method or (i) are awarded only if CF is clearly identified
	(iii)	$e^{-4x} \rightarrow 0$, $\frac{4}{7}\cos 3x + \frac{3}{7}\sin 3x = \frac{\sin}{2\pi \alpha}(3x + \alpha)$	M1	For considering either term
		$\rightarrow -1 \le v \le 1 OR -1 \le v \le 1$	A1√ 2	For correct range (allow <) CWO
		\rightarrow $1 \leqslant y \leqslant 1$ on $1 \approx y \approx 1$		f.t. as $-\sqrt{p^2 + q^2} \le y \le \sqrt{p^2 + q^2}$ from (ii)
			11	
4	(i)	abc = (ab)c = (ba)c = b(ac) =	M1	For using commutativity correctly
		b(ca) = (bc)a = (cb)a = cba	A1 2	For correct proof
		Minimum working:		(use of associativity may be implied)
		abc = bac = bca = cba		
		$OR \ abc = acb = cab = cba$		
	(ii)	$\{e, a\} \{e, b\} \{e, c\} \{e, bc\} \{e, ca\} \{e, ab\} \{e, abc\}$	B1	For any 5 subgroups
	()	$\{c, u\}, \{c, o\}, \{c, o\}, \{c, oc\}, \{c, oc\}, \{c, ub\}, \{c, $	B1 2	For the other 2 subgroups and none incorrect
	(iii)	$\{e, a, b, ab\}, \{e, a, c, ca\}, \{e, b, c, bc\}$	B1	For any 3 subgroups
		$\{e, a, bc, abc\}, \{e, b, ca, abc\}, \{e, c, ab, abc\}$	B1	For 1 more subgroup
		$\{e, bc, ca, ab\}$	B1 3	For 1 more subgroup (5 in total) and none incorrect
	(iv)	All elements $(\neq e)$ have order 2	B1*	For appropriate reference to order of elements
		OR all are self-inverse		in G
		OR no element of G has order 4 OR no order 4 subgroup has a generator or is cyclic		
		OR subgroups are of the form $\{e, a, b, ab\}$		
		(the Klein group)		
		\Rightarrow all order 4 subgroups are isomorphic	B1	For correct conclusion
			(*dep)2	
			9	

5	(i)	$dy = k u^{k-1} du$	M1		For using chain rule
		$\frac{dx}{dx} = \kappa u \qquad \frac{dx}{dx}$	A1		For correct $\frac{dy}{dx}$
		$\Rightarrow x k u^{k-1} \frac{\mathrm{d}u}{\mathrm{d}x} + 3u^k = x^2 u^{2k}$	M1		For substituting for <i>y</i> and $\frac{dy}{dx}$
		$\Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} + \frac{3}{kx}u = \frac{1}{k}xu^{k+1}$	A1	4	For correct equation AG
	(ii)	k = -1	B1	1	For correct k
	(iii)	$\frac{\mathrm{d}u}{\mathrm{d}u} - \frac{3}{\mathrm{d}u} = -\mathbf{r} \implies \mathrm{IF} \ \mathrm{e}^{-\int \frac{3}{\mathrm{d}x} \mathrm{d}x} = \mathrm{e}^{-3\ln x} = \frac{1}{\mathrm{d}u}$	B1√		For correct IF
		$dx x x = 11 c c x^3$			f.t. for IF = $x^{\frac{3}{k}}$
					using k or their numerical value for k
		$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(u \cdot \frac{1}{x^3} \right) = -\frac{1}{x^2}$	M1		For $\frac{d}{dx}(u \cdot \text{their IF}) = -x \cdot \text{their IF}$
		$\Rightarrow u \cdot \frac{1}{3} = \frac{1}{2}(+c) \Rightarrow y = \frac{1}{3}$	A1 A1	4	For correct integration both sides For correct solution for y
		$x^3 x \qquad cx^3 + x^2$		-	
			9)	
6	(a)	Closure $(ax+b)+(cx+d) = (a+c)x+(b+d)$	B1		For obtaining correct sum from 2 distinct
		e P	B1		elements For stating result is in <i>P</i>
			DI		OR is of the correct form
					SR award this mark if any of the closure
					result, the identity of the inverse element is stated to be in $P OR$ of the correct form
		Identity $0x + 0$	B1		For stating identity (allow 0)
		Inverse $-ax-b$	B1	4	For stating inverse
(b) (i)	Order 9	B1*	1	For correct order
	(ii)	<i>x</i> + 2	B1	1	For correct inverse element
	(iii)	(ax+b)+(ax+b)+(ax+b) = 3ax+3b	M1		For considering sums of $ax+b$
					and obtaining $3ax + 3b$
		= 0x + 0	A 1		For equating to $0x + 0$ OR 0
		$\Rightarrow ax + b$ has order $3 \forall a, b$ (except $a = b = 0$)	AI		and obtaining order 3
					incomplete consideration of numerical cases award B1
		Cyclic group of order 9 has element(s) of order 9	M1 (*de	p)	For reference to element(s) of order 9
		$\Rightarrow (Q, + (\text{mod } 3)) \text{ is not cyclic}$	A1	4	For correct conclusion
			10		

8 (i) (ii)	$Re(c+is)^{4} = \cos 4\theta = c^{4} - 6c^{2}s^{2} + s^{4}$ $\cos 4\theta = c^{4} - 6c^{2}(1-c^{2}) + (1-c^{2})^{2}$ $\Rightarrow \cos 4\theta = 8\cos^{4}\theta - 8\cos^{2}\theta + 1$ $\cos 4\theta \cos^{2}\theta - (8c^{4} - 8c^{2} + 1)(2c^{2} - 1))$	M1* A1 M1 (*de A1	⊧ cp) 4	For expanding $(c+is)^4$: at least 2 terms and 1 binomial coefficient needed For 3 correct terms For using $s^2 = 1-c^2$ For correct expression for $\cos 4\theta$ CAO For multiplying by $(2c^2 - 1)$
	$= 16 \cos^6 \theta = 24 \cos^4 \theta + 10 \cos^2 \theta = 1$	B1	1	to obtain AG WWW
(iii)	$\frac{16005}{160} = \frac{10005}{240} = \frac{10005}{240$	M1		For factorising sextic
	$\Rightarrow \left(c^2 - 1\right)\left(8c^4 - 4c^2 + 1\right) = 0$			with $(c-1)$, $(c+1)$ or (c^2-1)
	For quartic, $b^2 - 4ac = 16 - 32 < 0$	A1		For justifying no other roots CWO
	$\Rightarrow c = \pm 1 \text{ only} \Rightarrow \theta = n \pi$	A1	3	For obtaining $\theta = n \pi$ AG
				Note that M1 A0 A1 is possible
			SR	For verifying $\theta = n \pi$ by substituting $c = \pm 1$
				into $16c^6 - 24c^4 + 10c^2 - 2 = 0$ B1
(iv)	$16c^6 - 24c^4 + 10c^2 = 0$			
	$\Rightarrow c^2 \left(8c^4 - 12c^2 + 5\right) = 0$	M1		For factorising sextic with c^2
	For quartic, $b^2 - 4ac = 144 - 160 < 0$	A1		For justifying no other roots CWO
	$\Rightarrow \cos \theta = 0$ only	A1	3	For correct condition obtained AG
				Note that M1 A0 A1 is possible
			SR	For verifying $\cos \theta = 0$ by substituting $c = 0$
				into $16c^6 - 24c^4 + 10c^2 = 0$ B1
			SR	For verifying $\theta = \frac{1}{2}\pi$ and $\theta = -\frac{1}{2}\pi$ satisfy
				$\cos 4\theta \cos 2\theta = -1 B1$
		1	1	